Background
In
recent years, interest in nanotechnology exploded across research communities
and industries as varied as pharmacology,
material science, life sciences, ICT, transportation,
even defense
and space
exploration. The global
nanomaterials market of 11 million tons is currently valued at €20bn,
employing 300,000-400,000 people in Europe alone. Nano-enabled products reached
€200bn worldwide in 2009, expecting to reach €2 trillion by 2015.
Emergence
and exponential growth of a disruptive technology call for a systematized
approach by the government, assessing national situation, product potential,
and growth prospects through a national nanotechnology strategy policy. The Royal
Society report of 2004, the 2002
and 2010
Department for Business, Innovation & Skills (BIS) reports, the Engineering
and Physical Sciences Research Council (EPSRC) 2006 and the 2010 Nanotechnology
Mini-Innovation and Growth Team (Mini-IGT) report, as well as the Technology
Strategy Board’s Strategy 2009-2012 tried to address these issues, as did EU
bodies. But already by 2015, their recommendations and
assessment seem outdated and in need of reformulation. This overview presents
current views on nanotechnology in the UK along with issues to be considered in
formulating national nanotechnology strategy.
Ethical Issues
Nanotechnology’s interdisciplinary nature with applications spanning life sciences and material science in areas like construction, textiles, military uses, ICT, space exploration presents unique ethical and regulatory challenges. Professional ethics guidelines may inadequately address interdisciplinary aspects of emerging technologies like nanotechnology. Yet, singling out nanotechnology to require separate ethical guidelines threatens clamor for similar exceptions in other fields, increasing pressure on existing guiding principles. The precautionary principle as a means of minimizing unexplored health and environmental hazards of nanotechnology (postulated by the EU legislation as an “integrated, safe and responsible approach” especially in REACH, and by Greenpeace) requires balancing with the economic and industrial needs of modern nations and public expectations for technological advancement, e.g., new drugs and improved products. Corporate interests need balancing with those of the general public, while concentration of R&D but also application of nanotechnology in highly industrialized nations threaten to increase inequality and uneven distribution of advanced goods, hence of wealth. That may result in uneven distribution of benefits and risks: upper layers of society potentially reap the benefits of nano-enhanced drugs and products while lower strata likely absorb its costs of environmental hazards. A sustainable nanotechnology strategy must take all such consequences into consideration.
Nanotechnology
and Society
As a
potentially disruptive technology, nanotechnology will significantly affect
society on several levels through advances in healthcare (e.g., human
enhancement, prosthetics, nano-enabled drugs), environmental remediation,
renewable energy (e.g., photovoltaic cells), novel materials (e.g., graphenes,
carbon nanotubes), improvement of characteristics of existing materials (e.g.,
nanocoating, thin films), ICT solutions (e.g., hard drives, RFIDs), but also health
risks and environmental pollution. Its challenge consists of reconciling various
stakeholders’ divergent interests affected by the advent of nanotechnology:
scientists, entrepreneurs, investors, environmentalists, government and the general
public.
Previous
reports of BIS
and various think tanks
paid particular attention to the public’s
role in formulating nanotechnology development strategy. Initiatives went as
far as dedicating public resources to establish NanoJuries,
Nanodialogues
and Citizens
Forums as tools for gathering
public input on nanotechnology. But since the public is already represented
by the democratic institutions of government controlled by elected
representatives, this approach is inefficient: members of the general public lack
both scientific and policy qualifications to knowledgably influence national
strategy on emerging technologies, although they are both prospective
beneficiaries and bearers of potential risks such as environmental and health
costs of new technologies. Under a more paternalistic approach, resources for
polling public opinion would find better use supporting regulatory measures to
ensure safety of manufactured products, especially safe end-of-life disposal or
containment. Input from other stakeholders in the nanotechnology debate (enterprises,
researchers, government representing taxpayers’ interests) suffices to influence
national strategy for nanotechnology without neglecting input from special
interest groups (environmentalists, NGOs, civic organizations.) General public awareness of nanotechnology’s
benefits and risks may be increased through educational campaigns fool-proofed
against hypes or hoaxes by populist media influence.
Funding Models for Research and Development
Funding
for nanotechnology R&D comes from public and private sources. In 2011,
governments worldwide spent USD
10bn on nanotechnology R&D (UK: below USD 250m). In 2015, public and
private funding for nanotechnology R&D is expected to reach USD 250bn.
Public
financing originates from domestic and EU sources. The UK government supports
nanotechnology R&D through the Research
Councils’ UK Nanoscience Programme and Technology Strategy
Board programs. EU financing comes from EU Framework Programmes
(FP4 though FP7, with FP7 total 2007-2013
budget of €50.5bn, followed by Horizon
2020) and mixed ENIAC
funding. Private financing originates from banks, investment funds, private
investors and charities.
Startups
and Small and Medium Enterprises (SMEs) typically use a mix of public and
private financing and IPOs as an exit option and to attract additional investment.
Large enterprises dedicate
to R&D a percentage of sales of established product lines. Universities and research institutions fund
nanotechnology R&D through grants, endowment resources, and industry
support.
Significant
private funding usually requires advanced tangible research results and high commercialization
potential promising a stream of income within 2-5 years. Thus, public R&D funding
remains the financing method of choice for nanotechnology startups in spite of its
serious shortcomings regarding volume and bureaucratic requirements.
Health and Environmental Impact
Nanotechnology
holds great promises for improvement of health and longevity, but also for environmental remediation. However, numerous studies point to environmental
and health risks of nanoparticles. Environmental
groups such as Greenpeace,
but also the EC
and public
figures have raised concerns.
Environmental and health impacts of nanotechnology are little understood. Both seem correlated with the ability
of nanoparticles to penetrate the skin and blood/brain barriers but also with size and surface
properties of nanoparticles that can be neutral or highly toxic to living
cells or entire organisms.
Nanoremediation
presents an environmental dilemma: it promises to clean up hazardous waste such
as Superfund sites locally, cheaply, effectively, and with little secondary
contamination; however, nanoparticles released into the environment raise
concerns about far-reaching unintended consequences for distant yet connected
ecosystems, like ocean
life.
While
a moratorium on use and release of nanoparticles proposed
by Greenpeace seems an exaggerated measure that ignores today’s widespread
use of nano-enabled products, more studies are needed to determine the extent
of health and environmental hazards of nanotechnology and balance them with its
benefits. Remediation and prevention procedures should be developed as part of standard
industry practices, especially in the context of waste management and end-of-life
product cycles. Manufacturing restrictions should be placed on nanoparticles
with particularly toxic or dangerous specifications.
Other Relevant Issues
Another
issue for national nanotechnology strategy is allocation of its direct and indirect
cost. Policy needs to balance the needs of industry and of the general public.
Governmental priorities (economic development, industrialization, technological
leadership) are closely aligned with those of industry. But securing voter
support for policies and for elected officials requires visible protection of
the public interest. As for nanotechnology, the public must be educated about risks
and benefits to prevent popular distrust from stifling industry by regulatory
concessions forced by populists, as was the case with GMOs and stem cell
research. The cost of education and of satisfaction of the precautionary
principle need to be borne directly by the taxpayer - the ultimate beneficiary.
This contrasts with BIS 2010 recommendations that burdened industry with the
cost of nanotechnology-related PR efforts and with the consequences of the
precautionary principle. Such heightened expense for social acceptance -
ultimately passed on to consumers anyway - has chilling effects on the development
and application of nanotechnology by established enterprises, but especially by
startups. It puts domestic industry at a competitive disadvantage vis-à-vis
foreign manufacturers not burdened by UK standards more stringent than in the
rest of the EU or the world.
No comments:
Post a Comment