Nano Hazards

Synthetic nanomaterials form part of a gigantic emerging market world-wide with expected growth rates of about 23 percent. Only a few years ago, nanomaterials were viewed as barely out of science fiction, with highly promising applications but also novel risks. To date, no labeling requirements exist that would alert consumers to potential near- or long term hazards to the environment, even though the European Union has a directive on cosmetic labeling that will enter into force in July 2013. Some nanomaterials cannot be degraded naturally or filtered and recycled by waste processing plants; some involve risks similar to asbestos, and others may facilitate development of bacterial resistance against their very antibacterial proprieties currently used in hospitals.  

Absent mandatory labeling and registration, consumers cannot determine today whether a product contains nanomaterials. While nanoparticle applications feature them typically bound in other compounds, those are hardly problematic and almost never pose health hazards. But the same cannot be said about production processes and waste disposal. Nanoparticles can be suspended in air, breathed in, and can enter the bloodstream. They can also penetrate various sensitive areas of the environment. Little is known about the dispersion, behavior, and chemical qualities of aging and disintegrating nanoparticles. The benefits of nanotechnology are seldom in dispute – but the question is how to assess and balance benefits and risks appropriately, so that the hygienic, protective, energy, weight, or physical advantages are not offset by unacceptable long-term environmental hazards.